The University of Southampton

PhD projects

  • Entry Requirements: A very good undergraduate degree (at least a UK 2:1 honours degree, or its international equivalent). 
  • Closing date: Applications are accepted throughout the year and several start dates throughout the year are possible. Applications for the typical Sept./Oct. 2023 start should be received no later than 31 August 2023. 
  • Funding: For UK students, Tuition Fees and a stipend of £20,000 tax-free per annum for up to 3.5 years. For international students, the ORC offers a small number of scholarships to outstanding applicants and students with funding are also encouraged to apply.
  • Apply online here


Advanced crystal-film engineering

Supervisor: Jacob Mackenzie
Co-Supervisor: Rob Eason

Novel crystalline photonic devices offer exciting opportunities for creating efficient lasers and manipulating the properties of light. Pulsed Laser Deposition (PLD) is an extraordinary technique using light to create new materials. We seek a talented individual to help us advance the understanding and development of scalable concepts for growing single-crystal structures that will be enabling for a new generation of laser systems and advanced Photonics applications. 

This project, advanced crystal film engineering, is specifically aimed at developing new composite active-crystal structures and devices with advanced functionality. Your role will be to learn to grow, characterise, and utilise these PLD-grown advanced materials, suiting someone who is experimentally capable and keen to learn practical skills. Significant opportunities also exist for supporting modelling studies to augment the understanding of the complex PLD dynamics and device applications.

Due to the nature of this project, there will be opportunity for both inter-disciplinary research within the university and collaboration with external partners at national facilities and foreign universities.


Table-top cryogenic Lasers

Supervisor: Dr Jacob Mackenzie
Co-Supervisor: Professor Andy Clarkson

Cryogenically cooled lasers are becoming a platform-architecture for future high-energy and high-average power systems, currently being developed in large-scale-facilities institutes across the world. The main ambition of the research underpinning this project is to develop small-scale “turn-key” state-of-the-art solid-state lasers in the visible and UV wavelength bands. Targeting modes of operation that will lead to new laser parameters suitable for advanced-manufacturing applications.

We are looking for a keen and pragmatic applicant to advance the performance of cryogenic lasers through discovery of new approaches that capitalise on the unique aspects of these systems. Your role will include practical development of this laser architecture to enable their exploitation in new operating regimes that will outstrip the performance of state-of-the-art room-temperature solid-state lasers.

Due to the nature of this project, there will be opportunity for both inter-disciplinary research within the university and collaboration with external partners such as with the UK national laser facility.


We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.