The University of Southampton
University of Southampton Institutional Repository

Giant optical forces in planar dielectric photonic metamaterials

Giant optical forces in planar dielectric photonic metamaterials
Giant optical forces in planar dielectric photonic metamaterials
We demonstrate that resonant optical forces generated within all-dielectric planar photonic metamaterials at near-infrared illumination wavelengths can be an order of magnitude larger than in corresponding plasmonic metamaterials, reaching levels many tens of times greater than the force resulting from radiation pressure. This is made possible by the dielectric structures’ freedom from Joule losses and the consequent ability to sustain Fano-resonances with high quality factors that are unachievable in plasmonic nanostructures. Dielectric nano-optomechanical metamaterials can thus provide a functional platform for a range of novel dynamically controlled and self-adaptive nonlinear, tunable/switchable photonic metamaterials.
0146-9592
4883-4886
Zhang, Jianfa
7ce15288-2016-4b9c-8244-7aed073363ca
MacDonald, Kevin F.
76c84116-aad1-4973-b917-7ca63935dba5
Zheludev, Nikolay I.
32fb6af7-97e4-4d11-bca6-805745e40cc6
Zhang, Jianfa
7ce15288-2016-4b9c-8244-7aed073363ca
MacDonald, Kevin F.
76c84116-aad1-4973-b917-7ca63935dba5
Zheludev, Nikolay I.
32fb6af7-97e4-4d11-bca6-805745e40cc6

Zhang, Jianfa, MacDonald, Kevin F. and Zheludev, Nikolay I. (2014) Giant optical forces in planar dielectric photonic metamaterials. Optics Letters, 39 (16), 4883-4886. (doi:10.1364/OL.39.004883).

Record type: Article

Abstract

We demonstrate that resonant optical forces generated within all-dielectric planar photonic metamaterials at near-infrared illumination wavelengths can be an order of magnitude larger than in corresponding plasmonic metamaterials, reaching levels many tens of times greater than the force resulting from radiation pressure. This is made possible by the dielectric structures’ freedom from Joule losses and the consequent ability to sustain Fano-resonances with high quality factors that are unachievable in plasmonic nanostructures. Dielectric nano-optomechanical metamaterials can thus provide a functional platform for a range of novel dynamically controlled and self-adaptive nonlinear, tunable/switchable photonic metamaterials.

This record has no associated files available for download.

More information

Published date: 2014
Organisations: Optoelectronics Research Centre

Identifiers

Local EPrints ID: 368079
URI: http://eprints.soton.ac.uk/id/eprint/368079
ISSN: 0146-9592
PURE UUID: fe07993c-76e5-4459-8841-c33f1c3f82ba
ORCID for Kevin F. MacDonald: ORCID iD orcid.org/0000-0002-3877-2976
ORCID for Nikolay I. Zheludev: ORCID iD orcid.org/0000-0002-1013-6636

Catalogue record

Date deposited: 05 Sep 2014 10:53
Last modified: 15 Mar 2024 03:03

Export record

Altmetrics

Contributors

Author: Jianfa Zhang

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×