The University of Southampton

New collaboration to lead exploration of novel GLS thin film coatings

Published: 
12 October 2016

The Optoelectronics Research Centre (ORC) and Plasma App Ltd have announced that they are collaborating in a one-year £150k feasibility study exploring novel thin film coating technology and applications.

Co-funded by the UK’s innovation agency, Innovate UK and the Engineering and Physical Sciences Research Council (EPSRC), a major focus of the work will be materials based on Gallium, Lanthanum and Sulphur (GLS), a novel family of chalcogenide glasses that have excellent IR transparency and improved thermal and mechanical properties – without the toxicity issues of arsenic based glasses commonly used industry-wide.

Produced by the Novel Glass Group, led by Professor Dan Hewak of the Optoelectronics Research Centre at the University of Southampton, these glasses are difficult to deposit as thick films using thermal techniques due to their complex chemistry, high melting points, and electrical insulating properties. Plasma App’s novel Virtual Cathode Deposition (VCD) technique sidesteps these problems using pulsed beams of electrons to break up the GLS target material and deposit it as a thin film. Plasma App have now demonstrated very high deposition rates (> 0.2microns/min) of GLS glass onto a substrate at room temperature – over 10,000 times faster than conventional deposition by RF sputtering.

The project collaborators intend to produce well characterised samples of a range of novel GLS based optics for dissemination to members of EPSRC funded Chalcogenide Advanced Manufacturing Partnership. They will also be used by the wider community of chalcogenide glass users, especially those pursing optical applications for aerospace, defence and infrared imaging, or electronic applications such as next generation memory.

“This project provides a clear road-map to increase the uptake of GLS glass into new technology areas that were previously considered difficult to access.” explains Dmitry Yarmolich, Plasma App Ltd CEO.

Professor Dan Hewak said, “We want to be able to give end users of IR optics a safe, robust, and high performance alternative to arsenic based glasses and a faster more accurate deposition method.”

Visit the Novel Glass Group's Chalcogenide website.

Published: 13 October 2016

Share this article FacebookGoogle+TwitterWeibo

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×