The University of Southampton

Ultrafast Laser X-Ray

Working in collaboration with other departments within the university, the group are developing femtosecond laser-based soft X-ray sources. 

The X-ray source can be used for high-resolution imaging, with the aim of probing the shape of single proteins and other nanoscale objects, and also for ultrafast time-resolved measurements, as the pulses are less that 10fs long. The source is based on a high-power femtosecond laser, which produces ultrafast soft X-ray pulses via high harmonic generation.

Group webpage


Femtosecond coherent X-ray imaging of biological structures

Supervisor:  W.S. Brocklesby 
Co-Supervisor:  John Chad/Katherine Deinhart, IfLS

Developments in femtosecond laser technology have made the generation of ultrafast X-ray pulses using nonlinear optics a viable alternative to X-ray sources such as synchrotrons. A coherent lab-based X-ray source allows the development of new techniques such as coherent X-ray imaging, which combines the availability of new X-ray sources with new developments in computational algorithms to create images without the use of lenses. Our group has developed a femtosecond X-ray microscope based on radiation from high harmonic generation, and we have recently demonstrated its first ever application to imaging of biological structures. This project will look at the development of coherent X-ray microscopy of biological samples, such as biofilms or neurons, where the high resolution and new contrast mechanisms will be able to find new solutions to biological imaging problems. The project will combine high-power femtosecond lasers with cutting-edge computational algorithm design.


We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.