The University of Southampton
University of Southampton Institutional Repository

Characterization and computer modelling of thulium doped upconversion fibre lasers

Characterization and computer modelling of thulium doped upconversion fibre lasers
Characterization and computer modelling of thulium doped upconversion fibre lasers
The Thulium ion in a ZBLAN host is a promising candidate for the implementation of fibre lasers utilizing several different upconversion schemes. Very efficient 480 nm lasing at room temperature has already been demonstrated with 1120/1140 nm pumping at Amoco [1] and in our group [2] where some new fibres are currently under investigation. Optimization of the performance requires a quantitative understanding of the system, including degrading effects especially at higher dopant concentrations of up to 10,000 ppm. We have measured not only the laser performance but also the steady-state fluorescence and the fluorescence decay of Tm doped ZBLAN fibres for various pump wavelengths. A detailed computer model, including the three-step excitation scheme as well various energy transfer processes between excited ions, has been developed and brought into good agreement with the experimental data. In this way we have clearly identified several new energy transfer processes. They were found to limit the performance of the 480 nm transition from the 1G4 level, but at the same time they should provide enough population in the 1D2 level for lasing at 455 nm and perhaps even 365 nm with a single 1140 nm pump. Unfortunately, we have also found a broad-band absorption induced by the infrared pump light; this effect seems to depend strongly on the Tm3+ concentration. It prohibited lasing at the mentioned wavelengths so far, but it could well be absent in new fibres which may be available soon.
In this paper we will provide details of the computer model, and highlight those processes which play an important role in the various upconversion laser schemes.
Other groups have achieved efficient lasing at 1.47µm and 810nm by pumping similar fibres with 1064nm [3, 4] although the ground-state absorption is very weak at this pump wavelength. To understand this is another goal of our work which is still in progress.
Paschotta, R.
d9e3d753-48c1-405f-b31e-e662f23a70a4
Barber, P.R.
1a47a0a3-2ad5-4572-ac44-94ad63e3967b
Tropper, A.C.
f3505426-e0d5-4e91-aed3-aecdb44b393c
Hanna, D.C.
3da5a5b4-71c2-4441-bb67-21f0d28a187d
Paschotta, R.
d9e3d753-48c1-405f-b31e-e662f23a70a4
Barber, P.R.
1a47a0a3-2ad5-4572-ac44-94ad63e3967b
Tropper, A.C.
f3505426-e0d5-4e91-aed3-aecdb44b393c
Hanna, D.C.
3da5a5b4-71c2-4441-bb67-21f0d28a187d

Paschotta, R., Barber, P.R., Tropper, A.C. and Hanna, D.C. (1995) Characterization and computer modelling of thulium doped upconversion fibre lasers. 12th UK National Quantum Electronics Conference (QE12), Southampton, Southampton, United Kingdom. 04 - 08 Sep 1995.

Record type: Conference or Workshop Item (Paper)

Abstract

The Thulium ion in a ZBLAN host is a promising candidate for the implementation of fibre lasers utilizing several different upconversion schemes. Very efficient 480 nm lasing at room temperature has already been demonstrated with 1120/1140 nm pumping at Amoco [1] and in our group [2] where some new fibres are currently under investigation. Optimization of the performance requires a quantitative understanding of the system, including degrading effects especially at higher dopant concentrations of up to 10,000 ppm. We have measured not only the laser performance but also the steady-state fluorescence and the fluorescence decay of Tm doped ZBLAN fibres for various pump wavelengths. A detailed computer model, including the three-step excitation scheme as well various energy transfer processes between excited ions, has been developed and brought into good agreement with the experimental data. In this way we have clearly identified several new energy transfer processes. They were found to limit the performance of the 480 nm transition from the 1G4 level, but at the same time they should provide enough population in the 1D2 level for lasing at 455 nm and perhaps even 365 nm with a single 1140 nm pump. Unfortunately, we have also found a broad-band absorption induced by the infrared pump light; this effect seems to depend strongly on the Tm3+ concentration. It prohibited lasing at the mentioned wavelengths so far, but it could well be absent in new fibres which may be available soon.
In this paper we will provide details of the computer model, and highlight those processes which play an important role in the various upconversion laser schemes.
Other groups have achieved efficient lasing at 1.47µm and 810nm by pumping similar fibres with 1064nm [3, 4] although the ground-state absorption is very weak at this pump wavelength. To understand this is another goal of our work which is still in progress.

Text
500P.pdf - Author's Original
Download (61kB)

More information

Published date: 1995
Venue - Dates: 12th UK National Quantum Electronics Conference (QE12), Southampton, Southampton, United Kingdom, 1995-09-04 - 1995-09-08

Identifiers

Local EPrints ID: 77071
URI: http://eprints.soton.ac.uk/id/eprint/77071
PURE UUID: 81864c1b-c8fe-4624-8412-a613084705cf

Catalogue record

Date deposited: 11 Mar 2010
Last modified: 13 Mar 2024 23:43

Export record

Contributors

Author: R. Paschotta
Author: P.R. Barber
Author: A.C. Tropper
Author: D.C. Hanna

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×