The University of Southampton
University of Southampton Institutional Repository

Conditions for efficient build-up of power in a ring-cavity with Rh:BaTiO3

Conditions for efficient build-up of power in a ring-cavity with Rh:BaTiO3
Conditions for efficient build-up of power in a ring-cavity with Rh:BaTiO3
Numerous interaction geometries have been developed for photorefractive materials that rely on amplification of light via the two-beam coupling effect. One of the most elegant and simple configurations is a unidirectional ring resonator, which consists of a photorefractive crystal placed in a ring cavity and pumped by an external beam. If the two-beam coupling gain is above threshold, the resonating beam will build up from the amplification of scattered light. We present results on the most crucial parameters for the effective build-up of power in the resonating beam the wavelength of the pump beam, and the type of photorefractive material. The resonating beam accumulates energy from successive amplification in a photorefractive material until saturation sets in but also loses energy from absorption and other losses such as Fresnel reflections from the crystal and imperfect mirrors. We have performed intensity-dependent modelling of the resonator's power conversion factor. The power conversion factor is defined as the ratio of the resonating beam intensity to the intensity of the external pump beam. The figure below shows the dependence of this factor on absorption coefficient for different values of coupling coefficient Gamma.
Kaczmarek, M.
408ec59b-8dba-41c1-89d0-af846d1bf327
Eason, R.W.
e38684c3-d18c-41b9-a4aa-def67283b020
Kaczmarek, M.
408ec59b-8dba-41c1-89d0-af846d1bf327
Eason, R.W.
e38684c3-d18c-41b9-a4aa-def67283b020

Kaczmarek, M. and Eason, R.W. (1998) Conditions for efficient build-up of power in a ring-cavity with Rh:BaTiO3. Conference on Lasers and Electro-Optics/Europe, Glasgow, United Kingdom. 14 - 18 Sep 1998. 1 pp . (doi:10.1109/CLEOE.1998.719633).

Record type: Conference or Workshop Item (Paper)

Abstract

Numerous interaction geometries have been developed for photorefractive materials that rely on amplification of light via the two-beam coupling effect. One of the most elegant and simple configurations is a unidirectional ring resonator, which consists of a photorefractive crystal placed in a ring cavity and pumped by an external beam. If the two-beam coupling gain is above threshold, the resonating beam will build up from the amplification of scattered light. We present results on the most crucial parameters for the effective build-up of power in the resonating beam the wavelength of the pump beam, and the type of photorefractive material. The resonating beam accumulates energy from successive amplification in a photorefractive material until saturation sets in but also loses energy from absorption and other losses such as Fresnel reflections from the crystal and imperfect mirrors. We have performed intensity-dependent modelling of the resonator's power conversion factor. The power conversion factor is defined as the ratio of the resonating beam intensity to the intensity of the external pump beam. The figure below shows the dependence of this factor on absorption coefficient for different values of coupling coefficient Gamma.

Text
1784.pdf - Other
Download (134kB)

More information

Published date: 1998
Venue - Dates: Conference on Lasers and Electro-Optics/Europe, Glasgow, United Kingdom, 1998-09-14 - 1998-09-18
Organisations: Optoelectronics Research Centre, Physics & Astronomy

Identifiers

Local EPrints ID: 76605
URI: http://eprints.soton.ac.uk/id/eprint/76605
PURE UUID: 313fb129-924e-45af-a458-314e3deeb798
ORCID for R.W. Eason: ORCID iD orcid.org/0000-0001-9704-2204

Catalogue record

Date deposited: 11 Mar 2010
Last modified: 14 Mar 2024 02:33

Export record

Altmetrics

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×