The University of Southampton

Pulsed Laser Deposition (PLD)

Pulsed Laser Deposition (PLD) is a versatile technique for growing thin films and can be applied to a very wide range of materials. These films are used by the group to fabricate optical devices such as waveguide amplifiers and lasers, and, very soon, thin-disk lasers. 

Due to the successes achieved in the past with garnet crystals and sapphire, research continues to be centred around oxide crystals such as these, but the group is also interested in the deposition of glasses for new applications. They continually strive to further understand the PLD process, and are now using combinatorial growth (three lasers, three targets) which will enable the growth of better films with truly unique properties.

Group webpage 

PhD Projects:

Pulsed Laser Deposition (PLD) for growth of designer thin film optical waveguides

Supervisor: Professor R W Eason

Pulsed Laser Deposition (PLD) is a versatile technique for growing thin films and can be applied to a very wide range of materials. A pulsed laser (usually ultra-violet (UV) wavelength) is used to ablate a target, and a plasma plume is formed by the ejected material; the plasma plume then expands away from the target surface and interacts with the chamber atmosphere until it reaches the substrate, where it is deposited as a thin film. The substrate can be heated to assist with nucleation and allow crystal growth, and a background gas can be used to help control the film composition.

The PLD process covers many different areas of physics and chemistry, and an increasing understanding of what drives the mechanisms behind successful depositions is critical for the continuous improvement of future films and devices. Several deposition parameters must be carefully optimised before high quality films can be produced. A major advantage of the technique is the occurrence of stoichiometric transfer. This allows complex multi-component materials to be grown and has the added benefit that targets can be adapted easily from small pieces of bulk material.

Our work is mainly focussed on the production of high quality optical films for novel laser devices. The thin-film format is ideal for planar waveguide and thin-disk structures, and devices using both of these geometries are currently being pursued. 

The group operates a state-of-the-art triple-target deposition chamber and has several lasers and wavelengths available to use on the three different targets (three 266 nm Nd:YAG lasers and an excimer laser capable of operation at 248 nm and 193 nm). The triple target approach allows for some very complex designer structures to be grown, and challenges other film growth techniques to rival it. 

Targets can be used sequentially to build up discrete multilayer structures such as superlattices or cladding-pumped designs analogous to cladding pumped fibres. Alternatively, targets can be used concurrently to make custom crystal compositions, hybrid intermediate compositions, or even to grade composition continuously with depth to make custom refractive index or dopant concentration profiles. The control and automation of this system is critical for its potential to be fully realised.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×